# STRUCTURE ET SPECTRES DE VIBRATION DE COMPOSÉS ORGANO-MERCURIQUES

I. HALOGÉNURES D'ALLYLMERCURE, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-X

C. SOURISSEAU et B. PASQUIER

Laboratoire de Chimie Physique du C.N.R.S., 2, Rue Henri Dunant, 94-Thiais (France) (Reçu le 27 décembre 1971)

#### SUMMARY

Infrared and Raman spectra (4000–20 cm<sup>-1</sup>) of allylmercuric halides (chlorine, bromide and iodine), in the solid and liquid states, have been obtained. A complete vibrational assignment, based on these data, is proposed; the only rotational isomer observed in the solute state is of  $C_1$  symmetry.

## RÉSUMÉ

Les spectres infrarouges et Raman des halogénures d'allylmercure,  $CH_2=CH-CH_2-Hg-X$  (X=Cl, Br, I) à l'état solide et en solution ont été étudiés entre 4000 et 20 cm<sup>-1</sup>. Les résultats expérimentaux permettent de proposer une attribution complète des vibrations fondamentales et de confirmer l'existence d'un seul isomère, de symétrie  $C_1$ , à l'état dissous.

#### INTRODUCTION

A la suite de l'étude vibrationnelle complète du chlorure et du bromure d'allyle<sup>1,2</sup>, nous avons entrepris l'étude des spectres de vibration des halogénures d'allylmercure. La recherche et l'identification des isomères de rotation (Fig. 1), l'attribution de toutes les vibrations fondamentales et l'analyse des perturbations subies par le groupement allylique sont les trois aspects principaux de ce travail.

Il existe quelques travaux spectroscopiques antérieurs: Green<sup>3</sup> a publié, sans en faire d'interprétation, les fréquences infrarouges entre 3600 et 400 cm<sup>-1</sup> de l'iodure d'allylmercure à l'état solide. Nesmeyanov et coll.<sup>4</sup> ont enregistré les spectres infrarouges de ces composés entre 3100 et 400 cm<sup>-1</sup> et ont discuté quelques vibrations caractéristiques du groupement allylique. Enfin, Mink et Pentin<sup>5</sup> ont examiné les spectres infrarouges et Raman de 4000 à 200 cm<sup>-1</sup> du chlorure et du bromure d'allylmercure à l'état solide et en solution mais leur étude concerne uniquement les vibrations caractéristiques des groupements ( $-CH_2-Hg-X$ ).

Nous présentons dans ce mémoire les spectres infrarouges et Raman de 4000 à 20 cm<sup>-1</sup> des halogénures d'allylmercure,  $C_3H_5HgCl$ ,  $C_3H_5HgBr$  et  $C_3H_5HgI$ , sous

J. Organometal. Chem., 39 (1972)

divers états physiques. Les résultats concernant les basses fréquences sont nouveaux et l'étude complète par diffusion Raman de ces composés à l'état dissous, avec détermination des rapports de dépolarisation, n'a encore fait l'objet, à notre connaissance, d'aucune publication.

### PARTIE EXPÉRIMENTALE

Les composés étudiés ont été préparés selon la méthode décrite par Nesmeyanov et coll.<sup>4</sup> ou dans le cas de l'iodure par synthèse directe à partir d'iodure d'allyle et de mercure<sup>6</sup>. La pureté des produits a été controlée par l'analyse élémentaire et le point de fusion après recristallisation dans l'alcool ou le benzène. Ils fondent tous les trois en se décomposant : le chlorure à 106–108° (lit. 103–105° <sup>7,8</sup>; 111–112° <sup>4,9</sup>), le bromure à 124° (lit. 125° <sup>4</sup>) et l'iodure à 135° (lit. 134° <sup>3</sup>; 135° <sup>4,6</sup>).

Les spectres Raman ont été obtenus sur un spectromètre Coderg équipé d'un double monochromateur; la raie excitatrice était la raie 6328 Å d'un laser héliumnéon, Spectra-Physics, d'une puissance de 60 mW; aucune correction tenant compte de la fonction d'appareil n'a été apportée à la mesure des intensités des raies. Les rapports de dépolarisation ont été mesurés en faisant tourner de 90° le plan de polarisation de la lumière incidente et en enregistrant successivement la même composante de la lumière diffusée: pour tout rapport inférieur ou égal à 0.5 nous considérons la polarisation certaine. L'incertitude sur les fréquences est de  $\pm 2$  cm<sup>-1</sup> pour les raies fines.

Les spectres infrarouges ont été enregistrés sur les appareils Perkin–Elmer 225 et Beckman IR 11. Dans l'infrarouge moyen, on a utilisé des faces en CaF<sub>2</sub>, NaCl, KBr et CsI, en évitant un échange d'halogénure entre le composé et les faces. Dans l'infrarouge lointain, le polyéthylène, le téflon et le silicum ont été utilisés. Les échantillons ont été préparés sous forme de suspension dans le nujol et le fluorolube et les spectres à basse température ont été obtenus à l'aide d'un cryostat classique refroidi à l'azote liquide. Les fréquences infrarouges sont données avec une précision de  $\pm 1$ cm<sup>-1</sup> pour les bandes fines.

## RÉSULTATS

Les spectres infrarouges et Raman, de 3100 à 350 cm<sup>-1</sup>, du bromure d'allylmercure à l'état solide sont représentés sur la Fig. 2. Les spectres de 400 à 20 cm<sup>-1</sup> du chlorure, du bromure et de l'iodure d'allylmercure sont reproduits sur les Figs. 3, 4 et 5. Les fréquences, les intensités et l'attribution des bandes d'absorption et des raies Raman sont rassemblées dans les Tableaux 1, 2 et 3. Certaines de ces fréquences sont voisines de celles publiées par Green<sup>3</sup> ou par Mink et Pentin<sup>5</sup>.

On remarque un influence importante de l'état physique: entre l'état dissous et l'état cristallisé, les glissements de fréquence atteignent  $15 \text{ cm}^{-1}$  au dessus de 350 cm<sup>-1</sup> et dépassent 50 cm<sup>-1</sup> dans le domaine spectral inférieur.

#### DISCUSSION

Après quelques remarques sur la structure et la symétrie des halogénures d'allylmercure à l'état dissous et à l'état cristallisé, nous discuterons l'attribution des



Fig. 1. Configurations de la molécule d'halogénure d'allylmercure,  $CH_2=CH-CH_2-Hg-X$ ; (a) forme *cis*; (b), (c) formes *gauches*; (d) forme *trans*.

vibrations fondamentales du groupement allylique attendues dans le domaine  $3100-350 \text{ cm}^{-1}$ . Nous analyserons enfin les spectres obtenus en dessous de  $350 \text{ cm}^{-1}$  afin de situer les vibrations de valence mercure-halogène et les vibrations de déformation de l'ensemble du squelette.

### (1) Structure des halogénures d'allylmercure

Si on admet que l'enchainement C-Hg-X est linéaire, comme dans le cas des halogénures de méthylmercure<sup>10,11</sup>, les molécules d'halogénure d'allylmercure peuvent exister dans les configurations *cis, gauches* ou *trans* (Fig. 1), appartenant respectivement aux groupes de symétrie  $C_{s}$ ,  $C_{1}$  ou  $C_{s}$ . Le dénombrement des vibrations dans le groupe  $C_{s}$  est  $\Gamma_{Vib.}^{C_{s}} = 16 A' + 8 A''$ . L'examen des spectres Raman des trois composés à l'état dissous ne montre pas une surabondance de raies attribuables à des vibrations fondamentales: ceci est en faveur de l'existence prédominante d'un seul isomère de rotation. De plus, entre 1650 et 200 cm<sup>-1</sup> où on attend 16 vibrations fondamentales dont 11 de type A' avec le groupe  $C_{s}$  toutes les raies Raman observées, au nombre de 12 à 15 suivant l'halogène, sont polarisées. A l'état dissous, les molécules d'halogénet une configuration gauche. Ce résultat est en accord avec la structure proposée par Mink et Pentin<sup>5</sup> pour le chlorure d'allylmercure, à la suite d'un calcul du champs de force dans différentes hypothèses de configuration et avec celle suggérée par Kreevoy et coll.<sup>12</sup> pour l'iodure d'allylmercure d'après les spectres ultraviolets.

Sur les spectres des cristaux on remarque de nombreux écarts entre les valeurs des fréquences infrarouges et Raman, en particulier sur les vibrations de valence Hg-X (Tableaux 1, 2 et 3): comme nous le discuterons plus loin, ceci est en faveur de l'existence à l'état solide de formes dimères ou polymères associées par pont halogène.

## (2) Attributions des spectres entre 3100 et 350 $cm^{-1}$

On retrouve sur les spectres des halogénures d'allylmercure, l'allure générale des spectres des halogénures d'allyle<sup>1,2</sup>; les bandes ou raies caractéristiques du groupement vinyle sont aisément localisées. Aussi dans ce domaine spectral, nous attribuerons les spectres par comparaison avec ceux des halogénures d'allyle.

## TABLEAU I

| FRÉQUENCES INFRAROUGES                     | ET | RAMAN, | DU | CHLORURE | D'ALLYLMERCURE, |
|--------------------------------------------|----|--------|----|----------|-----------------|
| CH <sub>2</sub> =CH-CH <sub>2</sub> -Hg-Cl |    |        |    |          |                 |

| Raman <sup>a</sup> (cm <sup>-1</sup> ) |                 | Infrarouge      | (cm <sup>-1</sup> )      | Attributions                            |
|----------------------------------------|-----------------|-----------------|--------------------------|-----------------------------------------|
| Solutions <sup>b</sup>                 | Solide<br>(25°) | Solide<br>(25°) | <i>Solide</i><br>( 180°) |                                         |
| 3080 tf                                | 3082 f          | 3078 F          | {3075 F<br>} 3068 f      | v <sub>a</sub> (CH <sub>2</sub> =)      |
|                                        | 3066 tf         | 3063 M          | 3064 M                   | $v(C=C) + \delta(CH_2)$                 |
|                                        | 3032 tf         | 3031 M          | { 3032 M<br>{ 3029 ép    | ν(CH=)                                  |
|                                        |                 | ∫3007 ép        | {3007 M                  |                                         |
| 2995 M                                 | 3000 M          | (3002 M         | ( 2989 f                 | v <sub>s</sub> (CH <sub>2</sub> =)      |
|                                        |                 |                 | { 2975 ép                |                                         |
| 2963 tf                                | 2975 M          | 2974 F          | (2970 F                  | $v_{a}(CH_{2}^{*})$                     |
| 2933 M                                 | 2924 F          | 2925 M          | {2920 M                  | ν <sub>s</sub> (CH <sub>2</sub> )       |
|                                        |                 |                 | (2912 F                  |                                         |
|                                        |                 | 2856 f          | 2853 M                   | $2 \times \delta(CH_2)$                 |
|                                        |                 | 1804 M          | ∫ 1820 M                 | 2 × γ(CH=) (II)                         |
|                                        |                 |                 | ( 1814 M                 |                                         |
|                                        |                 | {1629 ép        | ∫1633 F                  |                                         |
| 1627 F P                               | 1626 TF         | {1625 TF        | 1626 ép                  | v(C=C)                                  |
|                                        |                 |                 | (1624 TF                 |                                         |
|                                        |                 | 1604 tf         | 1603 tf                  | $t(CH_2) + v(C-Hg)$                     |
|                                        |                 | 1599 ti         | 1594 tř                  | γ(CH=) (II) + γ(CH=) (III)              |
|                                        |                 | (4.004 -        | 1440 TF                  |                                         |
| 1430 t P                               | 1431 1          | 1431 F          | 1437 F                   | - ( )                                   |
|                                        |                 | (1425 F         | 1434 F                   | $\delta(CH_2)$                          |
|                                        |                 |                 | (1427 F                  |                                         |
| 1400 M D                               | 1400 14         | 1205 5          | (1400 F                  |                                         |
| 1400 M P                               | 1400 M          | 1395 F          | { 1396 F                 | 0(CH <sub>2</sub> =)                    |
| 1292 +F D                              | 1271 .6         |                 | (1393 M                  |                                         |
| 1302 U F                               | 1371 U          | 1203 6          | 13/1 0                   | $2 \times \gamma(CH-)$ (III)            |
| 1300 M F                               | 1300 M          | 13021           | (1190 áp                 | D(CH-)                                  |
| 1187 f P                               | 1187 M          | 1187 F          | 1105 cp                  | r(CH =)                                 |
|                                        | 1107 101        | 11021           | 1184 F                   | h(C112-)                                |
|                                        |                 |                 | (1104 I<br>(1121 F       |                                         |
| 1125 TE P                              | 1119 TF         | 1120 F          | 1120 én                  | w(CH:)                                  |
|                                        |                 | 11201           | 1115 F                   | <i>((C112)</i>                          |
|                                        |                 |                 | 1112 F                   |                                         |
|                                        | 1046 tf         | 1046 F          | (1050 F                  | t(CH <sub>3</sub> )                     |
|                                        |                 | 10101           | 1045 f                   | ((()))                                  |
|                                        |                 |                 | ( 992 F                  |                                         |
|                                        | 985 f           | 986 F           | 989 F                    | $\gamma$ (CH=) (I)                      |
|                                        |                 |                 | 984 F                    |                                         |
| 936 f P                                | 936 M           | 936 f           | 936 f                    | v(C-C)                                  |
|                                        | 917 f           | 918 f           | { 922 M                  | $\gamma$ (CH=) (III) + $\delta$ (CC-Hg) |
|                                        |                 |                 | { 914 M                  | · · · · · · ·                           |
|                                        |                 |                 | ( 907 TF                 |                                         |
|                                        | 901 f           | 903 TF          | { 903 TF                 | y(CH=) (II)                             |
|                                        |                 |                 | ( 899 ép                 | · · · · · · · · · · · · · · · · · · ·   |

| Raman <sup>e</sup> (cm <sup>-1</sup> ) |                 | Infrarouge <sup>a</sup> (cm <sup>-1</sup> ) |                   | Attributions                        |
|----------------------------------------|-----------------|---------------------------------------------|-------------------|-------------------------------------|
| Solutions <sup>b</sup>                 | Solide<br>(25°) | Solide<br>(25°)                             | Solide<br>( 180°) |                                     |
|                                        | 796 tf          | 794 tf                                      | <u> </u>          | w(CH <sub>2</sub> ) – δ(C=C-C)      |
|                                        |                 |                                             | { 777 TF          |                                     |
| 774 tf                                 | 773 M           | 770 F                                       | <b>} 772 F</b>    | r(CH <sup>2</sup> )                 |
| 728 tf                                 | 734 tf          | 734 f                                       | 738 f             | $v(C-Hg) + \delta(C-C-Hg)$          |
|                                        |                 |                                             | ( 691 ép          |                                     |
| 688 F P                                | 684 F           | 681 F                                       | <b>687 TF</b>     | γ(CH=) (III)                        |
|                                        |                 |                                             | 681 M             |                                     |
| 506 F P                                | 511 F           | 509 F                                       | ∫ 520 F           | v(C-Hg)                             |
|                                        |                 |                                             | ) 514 TF          |                                     |
|                                        | 454 tf          |                                             |                   | $2 \times \delta(C - C - Hg)$       |
|                                        |                 |                                             | ∫ 385 ép          |                                     |
| 385 F P                                | 384 F           | 382 F                                       | ک کر 381 F        | δ(C=C-C)                            |
|                                        | 342 tf          | 341 f                                       |                   | $t(CH_2) - r(CH_2)$                 |
|                                        |                 |                                             | ( 327 tf          |                                     |
|                                        |                 | <b>∫313 TF</b>                              | 313 TF            |                                     |
| 328 TF P                               | 292 TF          | (294 ép                                     | { 310 ép          | v(Hg-Cl)                            |
|                                        |                 |                                             | 293 M             |                                     |
|                                        |                 |                                             | (288 M            |                                     |
| 227 M P                                | 232 F           | 230 M                                       | { 253 M           | δ(CC-Hg)                            |
|                                        |                 |                                             | [ 235 M           |                                     |
|                                        | 180 tf          | 176 tf                                      | 182 f             | $2 \times \delta$ (C-Hg-Cl)         |
|                                        | 153 M           |                                             | 151 f             | $\delta'(C-Hg-Cl) + mode de réseau$ |
|                                        | 100 M           | 98 M                                        | 100 M             | δ'(C-Hg-Cl)                         |
|                                        | 85 f            | 88 TF                                       | 91 TF             | δ(C-Hg-Cl)                          |
|                                        | (78 f           | 63 f                                        | 65 f              |                                     |
|                                        | 52 M            |                                             |                   |                                     |
|                                        | { 46 f          | {                                           | {                 | Modes de réseau                     |
|                                        | 40 M            |                                             |                   |                                     |
|                                        | (31 ép          | ( 33 tf                                     | (36 f             |                                     |
|                                        | 26 M            | 23 M                                        | 24 M              | Torsion                             |

TABLEAU 1 (suite)

<sup>a</sup> Les intensités des raies Raman ou des bandes d'absorption sont indiquées par la notation suivante: TF: très fort; F: fort; M: moyen; f: faible; tf: très faible; ép: épaulement. <sup>b</sup> Solutions dans  $C_6H_6$  et  $C_6D_6$  de 0.1 ou 0.2 mole/l; les raies observées polarisées sont suivies d'une lettre P. <sup>c</sup> Les attributions des vibrations fondamentales sont données avec la légende,  $v_a$ : vibration de valence antisymétrique;  $v_s$ : vibration de valence symétrique;  $\delta$ : vibration de déformation plane; w: balancement du CH<sub>2</sub> perpendiculairement à son plan (wagging); t: torsion du CH<sub>2</sub> (twisting); r: balancement du CH<sub>2</sub> dans son plan (rocking); y: vibration de déformation hors du plan.

#### Vibrations de valence des liaisons C-H

Les spectres Raman des composés à l'état dissous présentent deux raies intenses vers 3000 cm<sup>-1</sup> et 2925 cm<sup>-1</sup> que nous attribuons aux vibrations  $v_s(CH_2$ vinylique) et  $v_s(CH_2$  méthylénique). Par analogie avec les halogénures d'allyle, nous assignons les raies de plus faible intensité vers 3080, 3019 et 2970 cm<sup>-1</sup> respectivement aux vibrations  $v_s(CH_2$  vinylique), v(CH vinylique) et  $v_s(CH_2$  méthylénique). Les cinq vibrations de valence v(C-H) sont ici bien distinctes.

### TABLEAU 2

| $(CH_{2}=) (C=C) + \delta(CH_{2}) (CH=) (CH_{2}=) (CH_{2}=) (CH_{2}) (CH_{2}) × \delta(CH_{2}) (CH_{2}) + \delta(CH_{2}=) × \gamma(CH=) (II) (C=C) (CH_{2}) + \gamma(C-Hg) \\(CH_{2}) + \gamma(C-Hg) + \gamma(C-Hg) \\(CH_{2}) + \gamma(C-Hg) + \gamma(C-Hg$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(CH_{2}=)$ $(C=C) + \delta(CH_{2})$ $(CH=)$ $(CH_{2}=)$ $(CH_{2}=)$ $(CH_{2})$ $(CH_{2})$ $\times \delta(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{2}) + \gamma(C=Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(C=C) + \delta(CH_{2})$ $(CH_{2}=)$ $(CH_{2}=)$ $(CH_{3})$ $(CH_{3})$ $(CH_{2})$ $\times \delta(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{3}) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(CH=)$ $(CH_{2}=)$ $(CH_{2}=)$ $(CH_{2})$ $(CH_{2})$ $\times \delta(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{2}) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(CH_2=)$<br>$(CH_2)$<br>$(CH_2)$<br>$\times \delta(CH_2)$<br>$(CH_2) + \delta(CH_2=)$<br>$\times \gamma(CH=)$ (II)<br>(C=C)<br>$(CH_2) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(CH_2=)$ $(CH_2)$ $(CH_2)$ $\times \delta(CH_2)$ $(CH_2) + \delta(CH_2=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_2) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $(CH_{2})$ $(CH_{2})$ $\times \delta(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{2}) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(CH_{2})$ $(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{2}) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $(CH_{2})$ $\times \delta(CH_{2})$ $(CH_{2}) + \delta(CH_{2}=)$ $\times \gamma(CH=) (II)$ $(C=C)$ $(CH_{2}) + \gamma(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| × $\delta$ (CH <sub>2</sub> )<br>(CH <sub>2</sub> )+ $\delta$ (CH <sub>2</sub> =)<br>× $\gamma$ (CH=) (II)<br>(C=C)<br>(CH <sub>3</sub> )+ $\nu$ (C-Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| × $\delta$ (CH <sub>2</sub> )<br>(CH <sub>2</sub> ) + $\delta$ (CH <sub>2</sub> =)<br>× $\gamma$ (CH=) (II)<br>(C=C)<br>(CH <sub>2</sub> ) + $\nu$ (C-Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $(CH_{2}) + \delta(CH_{2}=)$ × $\gamma(CH=)$ (II)<br>(C=C)<br>(CH_{2}) + $\nu(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\times \gamma$ (CH=) (II)<br>(C=C)<br>(CH <sub>2</sub> ) + $\nu$ (C-Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (C=C)<br>(CH3) + v(C-Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (C=C)<br>(CH2) + v(C-H2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(CH_2) + v(C-Hg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $(CH_{2}) + \nu(C-H_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(CH=)$ (II) + $\gamma$ (CH=) (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (CH <sub>2</sub> =)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\times \gamma$ (CH=) (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (CH=)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $CH_2$ ) + $\nu$ (C-Hg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>z</sub> =)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (CH2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH=) (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH = (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (CH <sub>3</sub> )-δ(C=C-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $(CH_2) - \delta(C=C-C)$ $CH_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (CH <sub>2</sub> ) - δ(C=C-C)<br>CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (<br>(<br>(<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

# FRÉQUENCES INFRAROUGES ET RAMAN, DU BROMURE D'ALLYLMERCURE, CH2=CH-CH2-Hg-Br

| Raman <sup>a</sup> (cm <sup>-1</sup> ) |                 | Infrarouge cm <sup>-1</sup> ) |                     | Attributions                         |
|----------------------------------------|-----------------|-------------------------------|---------------------|--------------------------------------|
| Solutions <sup>b</sup>                 | Solide<br>(25°) | Solide<br>(25°)               | Solide<br>(         |                                      |
|                                        |                 |                               | ∫690 TF             |                                      |
| 683 F P                                | 685 F           | 681 TF                        | ) 686 TF<br>( 511 F | γ(CH=) (III)                         |
| 500 F P                                | 500 F           | 502 F                         | 506 F               | v(C-Hg)                              |
| 455 tf                                 | 455 tf          | 456 tf                        | 457 tf              | $2 \times \delta(C - C - Hg)$        |
|                                        |                 |                               | (385 f              |                                      |
| 388 F P                                | 384 F           | 382 M                         | {380 M              | δ(C=C-C)                             |
| 350 tf                                 | 345 f           | 344 tf                        |                     | $t(CH_2) - r(CH_2)$                  |
| 236 M P                                | 235 M           | 234 M                         | ∫256 ſ              | $\delta$ (C–C–Hg)                    |
|                                        |                 |                               | 233 M               |                                      |
|                                        |                 |                               | {210 TF             |                                      |
| 214 TF P                               | 195 TF          | 207 F                         | {207 ép             | v(Hg-Br)                             |
|                                        | 138 f           |                               |                     | $2 \times \delta'(C-Hg-Br)$          |
|                                        | 125 f           | 130 tf                        | 132 f               | $2 \times \delta$ (C–Hg–Br)          |
|                                        | ∫110 tf         |                               |                     |                                      |
|                                        | ک 98 f          |                               |                     | $\delta'(C-Hg-Br) + modes de réseau$ |
|                                        | 78 M            | 72 M                          | 73 F                | $\delta'(C-Hg-Br)$                   |
|                                        | 64 f            | 62 TF                         | 66 TF               | $\delta$ (C–Hg–Br)                   |
|                                        | (52 f           | 54 f                          | 56 M                |                                      |
|                                        | 46 f            | 44 tf                         | 45 M                | Modes de réseau                      |
|                                        | { 40 M          |                               |                     |                                      |
|                                        | 34 f            |                               |                     |                                      |
|                                        | L27 M           |                               |                     |                                      |
|                                        |                 | 18 F                          | 20 F                | Torsion                              |

TABLEAU 2 (suite)

<sup>a,b,c</sup> Mêmes légendes que pour le Tableau 1.

#### **TABLEAU 3**

FRÉQUENCES INFRAROUGES ET RAMAN, DE L'IODURE D'ALLYLMERCURE, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-I

| Raman <sup>a</sup> (cm <sup>-1</sup> ) Infrarouge <sup>a</sup> ( |                 | $(cm^{-1})$     | Attributions       |                                   |
|------------------------------------------------------------------|-----------------|-----------------|--------------------|-----------------------------------|
| Solutions <sup>b</sup>                                           | Solide<br>(25°) | Solide<br>(25°) | Solide<br>(– 180°) |                                   |
|                                                                  |                 |                 | ( 3082 ép          |                                   |
| 3082 f                                                           | 3077 f          | 3078 M          | { 3077 M           | v.(CH <sub>2</sub> =)             |
|                                                                  | 3055 tf         | 3054 f          | 3054 f             | $v(C=C) + \delta(CH_2)$           |
|                                                                  | 3020 M          | 3022 f          | 3022 f             | ν(CH=)                            |
| 3001 M P                                                         | 2996 f          | 2996 f          | 2995 f             | $v_{s}(CH_{2}=)$                  |
| 2962 f                                                           | 2968 tf         | 2970 M          | ( 2971 M           | v <sub>a</sub> (CH <sub>2</sub> ) |
|                                                                  |                 |                 | 2963 ép            |                                   |
| 2929 M P                                                         | 2930 M          | 2924 M          | 2924 M             | $v_{s}(CH_{2})$                   |
|                                                                  |                 |                 | 2915 ép            |                                   |
|                                                                  |                 | 2851 tf         | 2849 tf            | $2 \times \delta(CH_2)$           |
|                                                                  |                 | .1928 f         | 1928 f             | $r(CH_2 =) + \gamma(CH =)$ (II)   |
|                                                                  |                 | 1793 tf         | 1799 f             | $2 \times \gamma(CH=)$ (II)       |

J. Organometal. Chem., 39 (1972)

(pour la suite voir la p. 58)

| Raman <sup>a</sup> (cm <sup>-1</sup> ) |                    | Infrarouge <sup>a</sup> (cm <sup>-1</sup> ) |                                 | Attirbutions                      |
|----------------------------------------|--------------------|---------------------------------------------|---------------------------------|-----------------------------------|
| Solutions <sup>b</sup>                 | Solide<br>(25°)    | Solide<br>(25°)                             | Solide<br>(–180°)               |                                   |
| 1623 F P                               | 1622 F             | 1619 F                                      | {1622 F<br>{1618 F<br>{1432 F   | ν(C=C)                            |
| 1428 f P                               | 1427 f             | 1428 F                                      | 1429 ép                         | $\delta(CH_{2})$                  |
| 1396 M P                               | 1393 M             | 1392 F                                      | {1390 F<br>{1387 ép             | $\delta(CH_2=)$                   |
| 1297 M P                               | 1295 M             | 1294 f                                      | 1293 f<br>(1190 F               | δ(CH=)                            |
| 1188 M P                               | 1188 M<br>∫1093 ép | 1188 F<br>∫1091 F                           | {1186 ép<br>∫1088 F             | r(CH <sub>2</sub> =)              |
| 1103 TF P                              | (1088 TF           | (1087 ép                                    | {1083 F<br>∫1039 F              | w(CH <sub>2</sub> )               |
| 1035 tf                                | 1034 f<br>989 f    | 1036 F<br>986 F                             | { 1035 M<br>∫ 981 F<br>} 977 έρ | t(CH <sub>2</sub> )<br>γ(CH=) (Ι) |
| 933 f P                                | 935 M              |                                             | { 935 f<br>  930 ép             | v(C-C)                            |
| 901 f P                                | 898 M<br>891 f     | 911 ép<br>901 TF<br>895 TF                  | { 915 tf<br>905 TF<br>896 TF    | γ(CH=) (II)                       |
| 768 f P                                | 764 M              | 763 F                                       | 762 ép                          | r(CH:)                            |
| 682 F P                                | 683 F              | 679 F                                       | { 687 F<br>{ 682 ép<br>{ 493 ép | γ(CH=) (III)                      |
| 492 F P                                | 486 F              | 484 F                                       | 489 F                           | v(C-Hg)                           |
| 443 tf                                 | 444 f              |                                             |                                 | $2 \times \delta(C - C - Hg)$     |
| 384 F P                                | 385 F              | 383 M                                       | { 382 M<br>{ 379 ép             | $\delta(C=C-C)$                   |
| 227 M P                                | 225 M              | 228 M                                       | 233 M                           | δ(C–C–Hg)                         |
| 328 M P                                | 194 M              | 193 f                                       | 208 M<br>∫ 116 ép               | $2 \times y(Hg-I)$                |
| 174 F P                                | 112 TF             | 110 TF<br>94 tf                             | 111 TF<br>96 f                  | v(Hg−I)<br>2×δ(C~Hg−I)            |
|                                        | ∫76 tf             |                                             |                                 |                                   |
|                                        | <b>∖</b> 72 f      |                                             | { 70 f<br>62 f                  | Modes de réseau                   |
|                                        | 49 M               | 54 ép                                       | 54 M                            | δ'(C-Hg-I)                        |
|                                        | · 43 f<br>( 39 M   | 47 TF                                       | 50 TF                           | δ(C-Hg-I)                         |
|                                        | { 29 M<br>26 f     |                                             |                                 | Mode de réseau                    |

TABLEAU 3 (suite)

«,b,c Mêmes légendes que pour le Tableau I.

Vibrations planes du squelette carboné et vibration de valence C-Hg

Les vibrations  $\nu(C=C)$ ,  $\nu(C-C)$  et  $\delta(C=C-C)$  ont été situées vers  $1637\pm 6$ ,  $934\pm 3$  et  $394\pm 14$  cm<sup>-1</sup> pour l'isomère gauche des chlorure, bromure et iodure d'allyle<sup>1</sup>. Nous attribuons les deux raies Raman intenses des halogénures d'allylmercure,



Fig. 2. Spectres infrarouges et Raman entre 3100 et 350 cm<sup>-1</sup> du bromure d'allylmercure, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-Br; (a) spectres infrarouges du solide à  $25^{\circ}$ ; (b) spectres infrarouges du solide à  $-180^{\circ}$ ; (c) spectres Raman du solide à  $25^{\circ}$ .

observées en solution vers  $1625 \pm 2$  et  $386 \pm 2$  cm<sup>-1</sup>, aux vibrations  $\nu$ (C=C) et  $\delta$ (C= C-C). La raie de très faible intensité à  $935 \pm 2$  cm<sup>-1</sup> correspond à la vibration  $\nu$ (C-C). L'abaissement en fréquence de la vibration  $\nu$ (C=C) semble dû à une délocalisation des électrons  $\pi$  par suite d'une interaction avec les orbitales p vides du mercure.

Enfin nous attribuons les raies Raman intenses à 506, 500 et  $492 \text{ cm}^{-1}$  (Tableaux 1, 2 et 3) à la vibration de valence C-Hg. Cette attribution est contraire à celle proposée par Green<sup>3</sup> mais est en accord avec les résultats de Mink et Pentin<sup>5</sup>.

## Vibrations de déformation des liaisons C-H

On attend entre 1450 et 1000 cm<sup>-1</sup>, six vibrations fondamentales: trois déformations planes,  $\delta$  (CH<sub>2</sub> méthylénique),  $\delta$  (CH<sub>2</sub> vinylique),  $\delta$  (CH vinylique), le balancement du CH<sub>2</sub> vinylique dans son plan, r (CH<sub>2</sub>=) (rocking), le balancement du CH<sub>2</sub> méthylénique perpendiculairement à son plan, w (CH<sub>2</sub>) (wagging), et la torsion du CH<sub>2</sub> méthylénique, t (CH<sub>2</sub>) (twisting). Les spectres Raman présentent dans cette région six raies vers 1433, 1398, 1298, 1185, 1114 et 1042 cm<sup>-1</sup>; à toutes ces fréquences, excepté 1298 cm<sup>-1</sup>, on observe sur les spectres infrarouges des absorptions fortes.

Les trois raies de plus hautes fréquences sont attribuées aux vibrations  $\delta(CH_2^2)$  méthylénique),  $\delta(CH_2 = vinylique)$  et  $\delta(CH = vinylique)$ . Les fréquences de ces vibra-

tions sont très voisines de celles des halogénures d'allyle<sup>1,2</sup> et les intensités relatives des raies Raman sont semblables.

L'attribution des trois autres vibrations est plus délicate. Les travaux antérieurs sur le chlorure d'éthyle<sup>13</sup>, les halogénures propargyliques<sup>14</sup> et allyliques<sup>1.2</sup> montrent que la vibration  $w(CH_2)$  est située dans ces composés à une fréquence supérieure à celle de la vibration  $t(CH_2)$ ; les fréquences de ces vibrations sont en outre sensibles à la nature de l'halogène. D'autre part, en série allylique, la vibration  $r(CH_2$  vinylique) apparait toujours vers 1195 cm<sup>-1</sup>. Nous proposons donc d'attribuer les raies Raman à 1185, 1114 et 1042 cm<sup>-1</sup> aux vibrations  $r(CH_2=)$ ,  $w(CH_2)$  et  $t(CH_2)$ . La très forte intensité de la raie attribuée à la vibration  $w(CH_2)$  s'explique par un très fort effet de champs en raison du balancement des deux hydrogènes vers l'atome de mercure. Mink et Pentin<sup>5</sup> avaient situé la vibration  $r(CH_2=)$  du chlorure d'allylmercure à une fréquence très basse, 1039 cm<sup>-1</sup>, ce qui suppose, à notre avis, une perturbation anormale de cette vibration par rapport à sa position dans les halogénures d'allyle.

Entre 1000 et 500 cm<sup>-1</sup>, on doit encore situer quatre vibrations fondamentales: trois déformations hors du plan des liaisons C-H vinyliques,  $\gamma$ (CH=) (I),  $\gamma$ (CH=) (II) et  $\gamma$ (CH=) (III), et le balancement du CH<sub>2</sub> méthylénique dans son plan, r(CH<sub>2</sub>) (rocking). On observe en Raman des raies de faible intensité vers 986, 903 et 772 cm<sup>-1</sup> et une raie forte vers 68 ' cm<sup>-1</sup>; aux fréquences correspondantes, les spectres infrarouges présentent des bandes intenses. Seule la fréquence de la bande d'absorption relevée vers 772 cm<sup>-1</sup> apparait sensible à la nature de l'halogène. En accord avec Mink et Pentin<sup>5</sup>, nous attribuons cette bande à la vibration r(CH<sub>2</sub>). Les trois autres bandes sont assignées aux vibrations  $\gamma$ (CH=) (I),  $\gamma$ (CH=) (II) et  $\gamma$ (CH=) (III); dans les halogénures d'allyl<sup>1,2</sup>, la vibration  $\gamma$ (CH=) (III) apparait à une fréquence beaucoup plus basse parce qu'elle est couplée avec la vibration de valence  $\nu$ (C-X).

# (3) Analyse des spectres entre 350 et 20 $cm^{-1}$

On attend dans ce domaine spectral la vibration de déformation de squelette  $\delta$ (C-C-Hg), la vibration de valence v(Hg-X), les deux vibrations de déformation,  $\delta$  et  $\delta'$ , du motif linéaire C-Hg-X et enfin la vibration de torsion des groupements CH<sub>2</sub>=CH et CH<sub>2</sub>-Hg-X, l'un par rapport à l'autre. Par comparaison avec les spectres de nombreux composés organomercuriques<sup>5,15,16,17</sup> les vibrations  $\delta$ (C-C-Hg), v(Hg-Cl), v(Hg-Br) et v(Hg-I) sont attendues respectivement vers 225, 320, 220 et 170 cm<sup>-1</sup>. Enfin, les trois derniers modes normaux devraient apparaitre en dessous de 100 cm<sup>-1</sup>.

Nous attribuons, en accord avec Mink et Pentin<sup>5</sup>, la bande d'absorption à 230 cm<sup>-1</sup>, peu sensible à la nature de l'halogène, à la vibration de déformation  $\delta$ (C-C-Hg).

Les bandes de forte absorption situées à 313, 207 et  $110 \text{ cm}^{-1}$ , ainsi que les raies Raman très intenses à 292, 195 et  $112 \text{ cm}^{-1}$ , (Figs. 3, 4 et 5) sont assignées respectivement aux vibrations de valence v(Hg-Cl), v(Hg-Br) et v(Hg-I). Avec le chlorure et le bromure, on remarque un écart d'une dizaine de cm<sup>-1</sup> entre les fréquences infrarouge et Raman de ces vibrations, ce qui suppose l'existence à l'état solide de formes dimères associées par pont halogène. Il n'en est pas de même avec l'iodure d'allylmercure qui semblerait posséder une structure cristalline différente. Cependant, la fréquence très basse de la vibration v(Hg-I) montre que cette liaison est très affaiblie, peut être à cause de l'existence de formes polymères. En effet, les



Fig. 3. Spectres infrarouges (a) et Raman (b) entre 400 et 20 cm<sup>-1</sup> du chlorure d'allylmercure, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-Cl, à l'état solide à 25°.



Fig. 4. Spectres infrarouges (a) et Raman (b), entre 400 et 20 cm<sup>-1</sup> du bromure d'allylmercure, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-Br, à l'état solide à 25°.



Fig. 5. Spectres infrarouges (a) et Raman (b), entre 400 et 20 cm<sup>-1</sup> de l'iodure d'allylmercure, CH<sub>2</sub>=CH-CH<sub>2</sub>-Hg-I, à l'état solide à 25°.

fréquences de ces vibrations, relevées sur les spectres Raman des composés à l'état dissous, augmentent considérablement surtout dans le cas de l'iodure (Tableaux 1, 2 et 3). Le même phénomène a déjà été observé avec les halogénures de méthylmercure<sup>15</sup> et de cyclopentadiénylmercure<sup>18</sup>.

En dessous de 100 cm<sup>-1</sup>, les spectres infrarouges présentent des bandes intenses et larges avec des maximums d'absorption à 98 et 88 cm<sup>-1</sup>, 72 et 62 cm<sup>-1</sup>, 54 et 47 cm<sup>-1</sup> respectivement dans le cas des chlorure, bromure et iodure d'allylmercure. Nous attribuons ces bandes aux vibrations de déformation,  $\delta'$  et  $\delta$  du squelette C-Hg-X. Les fréquences de ces vibrations sont assez voisines de celles observées par Green<sup>3</sup> avec les halogénures de phénylmercure. Enfin, les bandes à 23 et 18 cm<sup>-1</sup> dans les chlorure et bromure (Tableaux 1 et 2) peuvent correspondre à la vibration de torsion et toutes les bandes infrarouges ou raies Raman de plus faible intensité sont attribuables à des modes de réseau.

#### REMERCIEMENTS

Nous sommes reconnaissants à Monsieur J. Guillermet pour les conseils qu'il nous a prodigués. Nous remercions Mesdemoiselles M. L. Josien et J. M. Lebas et Monsieur A. Novak d'avoir bien voulu nous apporter leurs suggestions.

#### BIBLIOGRAPHIE

1 R. D. McLachlan et R. A. Nyquist, Spectrochim. Acta, 24A (1968) 103.

2 C. Sourisseau et B. Pasquier. J. Mol. Structure, 12 (1972) 1

- 3 J. H. S. Green, Spectrochim. Acta, 24A (1968) 863.
- 4 A. N. Nesmeyanov, A. Z. Rubezhov, L. A. Leites et S. P. Gubin, J. Organometal. Chem., 12 (1968) 187.
- 5 J. Mink et Yu. A. Pentin, J. Organometal. Chem., 23 (1970) 293.
- 6 N. Zinin, Ann., 96 (1855) 361.
- 7 H. V. Vijoyaraghavan, J. Ind. Chem. Soc., 17 (1940) 589.
- 8 M. M. Kreevoy, P. J. Steinwand, W. V. Kayser, J. Amer. Chem. Soc., 88 (1966) 124.
- 9 E. Rothstein, R. W. Saville, J. Chem. Soc., (1952) 2987.
- 10 W. Gordy et J. Sheridan, J. Chem. Phys., 22 (1954) 92.
- 11 L. F. Thomas, E. I. Sheppard et J. Sheridan, Trans. Faraday Soc., 51 (1955) 619.
- 12 M. M. Kreevoy, P. J. Steinwand et T. S. Straub, J. Org. Chem., 31 (1966) 4291.
- 13 F. A. Miller et F. F. Kiviat, Spectrochim. Acta, 25A (1969) 1363.
- 14 J. C. Evans et R. A. Nyquist, Spectrochim. Acta, 19 (1963) 1153.
- 15 P. L. Goggin et L. A. Woodward, Trans. Faraday Soc., 62 (1966) 1423.
- 16 G. E. Coates et D. Ridley, J. Chem. Soc., (1964) 166.
- 17 Z. Meic, Croat. Chim. Acta, 41 (1969) 179.
- 18 E. Maslowsky et K. Nakamoto, Inorg. Chem., 8 (1969) 1108.